
Spacetime structures in simple quantum systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 L277

(http://iopscience.iop.org/0305-4470/30/9/004)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) L277–L283. Printed in the UK PII: S0305-4470(97)81100-6

LETTER TO THE EDITOR

Spacetime structures in simple quantum systems

Frank Großmann†, Jan-Michael Rost† and Wolfgang P Schleich‡
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Abstract. Recently W Kinzel [1995Phys. Bl.51 1190] has argued that even simple quantum
systems can exhibit surprising phenomena. As an example he presented the formation of canals
and ridges in the time-dependent probability density of a particle caught in a square well with
infinitely high walls. We show how these structures emerge from the wavefunction and present
a simple derivation of their location in the spacetime continuum.

Prominent structures in the probability density of quantum states have attracted much
attention. They are known asscarsfor time-independent problems where certain eigenstates
have regions of high amplitude along periodic orbits of the classical dynamics for the same
system [1]. This phenomenon has helped us to understand the links between classical and
quantum mechanics in more detail [2]. In the time domain the reconstruction or partial
reconstruction of the initial spatial probability distribution is known asrevivals and has
played an important role in the understanding of wavepacket dynamics [3]. The combination
of spatial and temporal structures in a probability density has only recently entered the
focus of attention. Kinzel [4] has numerically studied the time evolution of a particle in an
infinitely-high potential well. He used a Gaussian initial wavepacket centred close to the
left wall and furnished with a momentum pointing towards the right. In a three-dimensional
plot of the absolute square of the wavefunction over position and time, regular structures
in the shape of valleys and hills appear. Clearly, such structures must be an interference
phenomenon. However, their origin is not as obvious as one might expect for such a simple
system and has not been given in [4]. Berry and Klein have found similar patterns in
the Talbot effect and Berry has also studied fractal probability densities in the spacetime
continuum for multi-dimensional box potentials [5]. In the latter case he has used a special
initial state with equal probability amplitude at each point in the box. Stifteret al [6], using
Gaussian initial wavefunctions, have shown that the structures in the probability distribution
can be viewed as a consequence of the interference term in the Wigner function. In this
letter we will use an initial state which is composed of the firstN eigenfunctions with equal
weights. This allows us to study the emerging pattern in spacetime as a function ofN . It
will turn out that the structures in the amplitude distribution arise from a cancellation of
terms in the wavefunction and that the parameterN controls the resolution of the pattern.
Our analysis borrows a mathematical technique which is familiar in the context of Jacobi’s
theta functions. We will also discuss briefly possible generalizations of the phenomenon to
other systems.
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Any initial wavefunction90(x) in the box extending fromx = 0 to x = L may be
expanded in the basis of eigenfunctions

φn(x) =
√

2

L
sin

(
nπ

L
x

)
(1)

with coefficients

an =
∫ L

0
dx φn(x)90(x). (2)

The corresponding eigenenergies

En = n2 1

2m

(
h̄π

L

)2

= n2h̄
2π

T
(3)

with n = 1, 2, 3, . . . determine the so-called revival timeT = 4mL2/(πh̄) of the wavepacket
in the box [7].

To keep the argument transparent we now discuss an initial wavefunction90 consisting
of N equally contributing eigenfunctions, i.e.an = 1, for n = 1, . . . , N and an = 0 for
n > N . In dimensionless variablesξ ≡ x/L and τ ≡ t/T for position and time the
normalized wavefunction reads

9(ξ, τ ) =
√

2

N

N∑
n=1

sin(nπξ) exp(−2π in2τ). (4)

Figure 1 displays the wavefunctions atτ = 0 made up of 20, 50 and 100 eigenfunctions,
respectively. We note that increasingN shifts the centre of the initial state towards the left
and leads to sharper localization in position. Figure 2 shows a density plot of the position
and time-dependent probability amplitude in the(ξ, τ ) plane represented by the absolute
value of a wavefunction consisting of 20 eigenfunctions. We observe characteristic rays
where |9(ξ, τ )| assumes low (darkness) and high (brightness) values. These rays emerge
either from the left corner (ξ = 0, τ = 0) or from the right corner (ξ = 1, τ = 0) of the
spacetime strip. Moreover, there is a characteristic asymmetry between the two types of
rays: along the ones from the left corner the wavefunction shows low probability, that is
canals. In contrast some of the rays originating from the right corner have high probability,
that is ridges. However, canals constantly cut through these ridges creating a chopped
structure as seen in the line connecting the upper left corner with the lower right corner in
figure 2. We also recognize that additional rays enter the spacetime strip from its sides.

An educated guess for the rays is

ξ = l + 2kτ (5)

where l and k are integers. Indeed forl = 0 andk > 0, equation (5) describes the rays
emerging from the left corner, whereas forl = 1 andk 6 0 we find the rays whose origin
is the right corner. The other values ofl such asl < 0 andk > 0 or l > 1 andk < 0 give
the rays entering the strip at non-zero values ofτ .

We gain deeper insight into the functional form equation (5) of these rays when we
recall that according to Born [8] the time evolution of a particle with wavefunction90 in
the box is identical to that of a free particle prepared initially in a periodic array

9p(ξ, τ = 0) =
∞∑

m=−∞
9−0 (ξ + 2m) (6)

of antisymmetric wavefunctions

9−0 (ξ) ≡ 90(ξ)−90(−ξ). (7)
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Figure 1. Initial wavefunctions90(ξ, τ = 0) resulting from superpositions ofN = 20
(full curve), N = 50 (long-dash curve) andN = 100 (short-dash curve) equally weighted
eigenfunctions of the box potential. For increasing numberN of contributing eigenstates the
initial wavepacket gets narrower and its centre approaches the left wall of the box.

The period of this array is twice the length of the box. Hence in equation (5) even values of
l = 2m correspond to the positions of the left wall and its mirror images. In contrast, odd
valuesl = 2m+1 represent the positions of the right wall and its mirror images. Therefore,
the rays equation (5) are the spacetime trajectories of a free particle starting at timeτ = 0
at the right or left wall and their mirror images. Note that according to equation (5) the
particle propagates with the dimensionless velocityvk ≡ dξ/dτ = 2k. Sincek is integer,
vk assumes only discrete values. This quantization of velocity is a consequence of the
periodicity of the array.

We emphasize that this discussion of the free propagation of the array also throws some
light on the difference in behaviour of9(ξ, τ ) along the rays emerging from the two corners
(ξ = 2m, τ = 0) and (ξ = 2m + 1, τ = 0) corresponding either to the left or the right
wall of the box and their mirror images. Indeed these walls are different: whereas the left
wall marks the beginning of the periodicity interval of period 2 the right wall is inserted at
ξ = 1 as to retain from all periodic functions the antisymmetric ones, only. This procedure
is necessary since only the latter vanish at the walls atξ = 0 andξ = 1, and hence satisfy
the required boundary conditions.

In order to fathom the mathematical reason for the suppression of the wavefunction
along some of the rays, equation (5), in the(ξ, τ ) plane, we now write the sine function in
the wavefunction, equation (4), in terms of exponentials,

9(ξ, τ ) =
√

2

N

1

2i
{ϑ(ξ, τ )− ϑ(−ξ, τ )} (8)

where we have introduced the finite theta sum

ϑ(ξ, τ ) ≡
N∑
n=1

qn
2

einπξ (9)

with q ≡ exp(−2π iτ) [9]. The behaviour of the wavefunction along the raysξ = l + 2kτ
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Figure 2. Density plot of the absolute value|9(ξ, τ )| of a wavefunction in the(ξ, τ ) spacetime
strip. Darkness displays a low and brightness a high functional value. We note that canals of
different steepness emerge from the lower right or left corners of the strip. Moreover, canals
enter from the sides. For this example we have considered a wavefunction consisting of 20
eigenfunctions.

follows from

ϑ [ξ = ±(l + 2kτ), τ ] =
N∑
n=1

(−1)nl exp{−2π iτ(n2∓ nk)}. (10)

When we complete the square in the exponent we find

ϑ [ξ = ±(l + 2kτ), τ ] = q−(k/2)2
N∑
n=1

(−1)nlq(n∓k/2)
2

(11)

and hence the wavefunction along the rays equation (5) reads

9(ξ = l + 2kτ, τ ) =
√

2

N

1

2i
q−(k/2)

2
N∑
n=1

(−1)nl [q(n−k/2)
2 − q(n+k/2)2]. (12)

We note that each term contributing to this sum is the difference of the two termsq(n−k/2)
2

and q(n+k/2)
2
. Since the powers(n − k/2)2 and (n + k/2)2 are shifted by the numberk

determining the steepness of the ray, we expect a partial cancellation of these terms provided
the numberN of terms is much larger thank. Here the prefactor(−1)nl plays a crucial
role. Indeed, whenl is even this factor is unity and cancellation takes place. However,
when l is odd the situation is more complicated. Now cancellation only occurs whenk is
even. Before we show this we note from equation (12) the symmetry relation

9(ξ = l − 2kτ, τ ) = −9(ξ = l + 2kτ, τ ) (13)

which allows us to confine our discussion to positive values ofk only.
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We start our analysis of this cancellation effect in equation (12) by introducing the
summation indexj ≡ n− k in the summation of the first term which yields

9(ξ = l + 2kτ, τ ) =
√

2

N

1

2i
q−(k/2)

2

{
(−1)kl

N−k∑
j=1−k

(−1)jlq(j+k/2)
2 −

N∑
n=1

(−1)nlq(n+k/2)
2

}
.

(14)

When we recall the relations
N−k∑
j=1−k

dj =
0∑

j=1−k
dj +

N−k∑
j=1

dj =
k∑
n=1

dn−k +
N−k∑
j=1

dj (15)

and
N∑
n=1

dn =
N−k∑
n=1

dn +
N∑

n=N−k+1

dn =
N−k∑
n=1

dn +
k∑

j=1

dj−k+N (16)

valid for arbitrary coefficientsdj , the wavefunction9 along the raysξ = l + 2kτ takes the
form

9(ξ = l + 2kτ, τ ) =
√

2

N

1

2i
q−(k/2)

2

{
[(−1)kl − 1]Sk,l(N, τ)

+
k∑
n=1

(−1)nl [q(n−k/2)
2 − (−1)(N−k)lq(n−k/2+N)

2
]

}
(17)

where

Sk,l(N, τ) =
N−k∑
j=1

(−1)jl exp[−2π i(j + k/2)2τ ]. (18)

From equation (17) we recognize that for even values ofl or k the prefactor of the first
sumSk,l vanishes. Moreover, each term of the remaining sum is of the order of unity since
|q| = | exp(−2π iτ)| = 1. Hence we can estimate this sum consisting ofk differences of
order 2 by 2|k|. This provides us with the upper bound

|9(ξ = 2m+ 2kτ, τ )| 6
√

2

N
|k| (19)

for the absolute value of the wavefunction along the raysξ = 2m+ 2kτ starting from the
left wall and its mirror images. Similarly along the even rays we findξ = 2m + 1+ 4kτ
emerging from the right wall and its mirror images

|9(ξ = 2m+ 1+ 4kτ, τ )| 6
√

2

N
|2k|. (20)

When we confine ourselves to rays of large slope that is small values of|k|, that is|k| � N ,
we find the inequalities

|9(ξ = 2m+ 2kτ, τ )| � 1 (21)

and

|9(ξ = 2m+ 1+ 4kτ, τ )| � 1. (22)

We recall that the modulus|9(ξ, τ )| of any normalized wavefunction in the box of unit
length is unity on average. Hence the inequalities equations (21) and (22) predict that along
these rays the modulus|9| falls far below the average value and canals form along these
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rays. We also note from equations (19) and (20) that for increasing|k|, that is decreasing
steepness of the rays, the cancellation of terms in the sum equation (12) becomes less perfect
and the canals become less pronounced in complete agreement with figure 2.

Our treatment brings out most clearly that the formation of the canals is indeed
a consequence of quantum interference in the wavefunction: the inequalities (21) and
(22) follow from the cancellation in (17) which we can trace back to the fact that any
wavefunction in the box is a superposition of a right and a left running wave. These waves
have a fixed phase differenceπ , which translates itself into the difference ofϑ sums in
equation (8). The difference reflects the fact that the energy eigenfunctions have to satisfy
the boundary conditions at the walls. This picture is in complete agreement with [6] which
used the Wigner representation to identify these canals as a consequence of the Wigner
interference term between the two waves moving against each other.

Let us now briefly discuss the case of odd values ofl and k when the prefactor ofSk,l
in equation (17) does not vanish. Hence when we now estimate|9| along these rays we
have to take into account the sumSk,l . In particular, we have to study its dependence on
time τ . Since the sum is similar to the one discussed in the context of curlicues [10] or
fractional revivals [5, 11] we can simply borrow the results of these studies. We find† times
τ , that is certain rational values of the revival timeT for which partial cancellation inSk,l
takes place. For these times the wavefunction9 falls, as in the case of the canals, far
below its average value of unity. However, there also exist timesτ where the individual
terms inSk,l superpose constructively. In this case the sumSk,l , and not the second sum in
equation (17), is the dominant contribution to9 giving rise to distinct maxima along these
rays. From figure 2 we see that indeed every second ray propagating from(ξ = 1, τ = 0)
to the left displays a complicated chopped structure, where for most of the ray a ridge-like
behaviour is seen. Again this phenomenon stands out most clearly for steep rays, i.e. small
values ofk.

Let us mention that this behaviour depends sensitively on the total number of
eigenfunctionsN . The pattern becomes richer for larger values ofN . This fact can be
interpreted in the way that an initial state with a large numberN of eigenstates resolves
the features of the dynamics in the box to a much higher degree than forN small. Our
derivation in terms of the eigenfunction expansion directly shows for all cases,l even or
odd andk even or odd, that the number of rays|k| which are visible depends on the number
of eigenfunctionsN contained in the wavefunction. Since the eigenfunctions of a box
represent a Fourier basis, by Fourier analysing wavepackets in other potentials one could
make use of the methods given here.

We conclude by briefly discussing generalizations of these spacetime structures.
According to Born [8] and equations (6) and (7), the boundary conditions of the box impose
the antisymmetry of two waves moving against each other. Mimicking this symmetry in a
molecular type of potential, Stifteret al [6] were able to produce similar effects. Moreover,
in another formulation of the probability density in the energy representation, Stifteret al
[12] have identified the characteristic spacetime lines and have given a relativistic extension.
We also recall that the quantum mechanical problem of a particle on a ring can be mapped
onto the box problem, if the same boundary conditions are fulfilled. This can be achieved by
subtracting opposite angular momentum eigenstates from each other. Let us finally mention
that the corresponding problem in classical wave mechanics, i.e. a vibrating string clamped
at ξ = 0 andξ = 1, shows a much simpler structure in the(ξ, τ ) plane because its spectrum
is linear inn.

† This also follows from the original wavefunction expansion, equation (4).
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In summary we have shown that the spacetime structures in the quantum mechanical
probability amplitude for a particle in a square well result from a cancellation in the
eigenfunction expansion, equation (4). By using the wavefunction’s Jacobi theta function-
like properties represented in equation (11) we were able to explain the canals and also the
chopped ridges along the rays, (5), in(ξ, τ ) space. The details of these spacetime patterns
are indeed a property of the wavefunction itself. How much of these details is revealed
depends sensitively on the initial wavefunction.
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